Scroll down for references for this edition

PASSWORD:  Diabetes Management Journal is a medical journal exclusively for healthcare professionals. Apply for access here:


Diabetes Management Journal February 2022 References


Editor's letter

  1. Nazarzadeh M, Bidel Z, Canoy D, Copland E, Wamil M, Majert J, Smith Byrne K, Sundström J, Teo K, Davis BR, Chalmers J, Pepine CJ, Dehghan A, Bennett DA, Davey Smith G, Rahimi K. Blood pressure lowering and risk of new-onset type 2 diabetes: an individual participant data meta-analysis. The Lancet 398:10313 pp1803-1810. Nov 13, 2021. doi.org: 10.1016/S
  2. Sattar N, Preiss D, Murray HM et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010; 375: 735-742
  3. Wang S, Cai R, Yuan Y, Varghese Z, Moorhead J, Ruan XZ. Association between reductions in low-density lipoprotein cholesterol with statin therapy and the risk of new-onset diabetes: a meta-analysis. Sci Rep. 2017; 739982

TGA approves pills for COVID-19

  1. National COVID Vaccine Taskforce. Australian Government. Oral Treatments for COVID-19. Feb 6, 2022
  2. Long C. TGA approves Novavax COVID vaccine, anti-viral pills to treat disease in vulnerable patients. Posted 20 January 2022. www.abc.net.au/news/2022-01-20/tga-approves-antiviral-covid-pills-novavax-vaccine/100768796

Celebrate: a century of insulin

  1. Diabetes UK. Her Majesty the Queen welcomes 100 year anniversary of insulin treatment. www.diabetes.org.uk/about_us/news/her-majesty-queen-welcomes-100-year-anniversary-insulin-treatment
  2. Diabetes UK. 100 Years of Insulin. Who discovered insulin? www.diabetes.org.uk/research/research-impact/insulin
  3. The Nobel Prize. John Macleod Biography. www.nobelprize.org/prizes/medicine/1923/macleod/biographical/

Statins may aggravate diabetes

  1. Mansi IA, Chansard M, Lingvay I, Zhang S, Halm EA, Alvarez CA. Association of Statin Therapy Initiation With Diabetes Progression: A Retrospective Matched-Cohort Study. JAMA Intern Med. Published online October 04, 2021. doi:10.1001/jamainternmed.2021.5714
  2. Kling J. Statins Tied to Diabetes Progression. Medscape Medical News. October 7, 2021 www.medscape.com/viewarticle/960421

Children and youth risk diabetes after COVID-19

  1. Barrett CE., Koyama AK, Alvarez P, Chow W, Lundeen EA, Perrine CG, Pavkov ME, Rolka DB, Wiltz. JL, Bull-Otterson L, Grey S, Boehmer TK, Gundlapalli AV, Siegel DA, Kompaniyets L, Goodman AB, Mahon BE, Tauxe RV, Remly K, Saydah S. Risk for newly diagnosed diabetes less than 30 days after SARS-Cov-2 infection among persons aged <18 years--United States, March 1, 2020 -June 28, 2021 Mob. Mortal Wkly rep. DOI: doi.org/10.15585/mmwr.mm7102e2
  2. Kusmartseva I, Wu W, Syed F, Van Der Heide V, Jorgensen M, Joseph P, Tang X, Candelario-Jalil E, Yang C, Nick H, Harbert JL, Posgai AL, Paulsen JD, Lloyd R, Cechin S, Pugliese A, Campbell-Thompson M, Vander Heide RS, Evans-Molina C, Homann D, Atkinson MA. Expression of SARS-CoV-2 Entry Factors in the Pancreas of Normal Organ Donors and Individuals with COVID-19. Cell Metab. 2020 Dec. 1;32(6):1041-1051.e6. doi: 10.1016/j.cmet.2020.11.005. Epub 2020 Nov 13. PMID: 33207244; PMCID: PMC7664515.

Feel the pulse

  1. Bano A, Rodondi N, Beer JH, Moschovitis G, Kobza R, Aeschbacher S, Baretella O, Muka T, Stettler C, Franco OH, Conte G, Sticherling C, Zuern CS, Conen D, Kühne M, Osswald S, Roten L, Reichlin T; of the Swiss‐Investigators. Association of Diabetes With Atrial Fibrillation Phenotype and Cardiac and Neurological Comorbidities: Insights From the Swiss-AF Study. J Am Heart Assoc. 2021 Nov 16;10(22):e021800. doi: 10.1161/JAHA.121.021800. Epub 2021 Nov 10. PMID: 34753292.
  2. Rho RW, Page RL. Asymptomatic atrial fibrillation. Prog Cardiovasc Dis. 2005 Sep-Oct;48(2):79-87. doi: 10.1016/j.pcad.2005.06.005. PMID: 16253649.

Contradictions in Galectin-1

  1. Cummings RD, Liu F-T, Vasta GR. Essentials of Glycobiology, chapter 36 Galectins. Cold Spring Harbor Laboratory Press, 2017. www.ncbi.nlm.nih.gov/books/NBK453091/
  2. Drake I, Fryk E, Strindberg L, Lundqvist A, Rosengren AH, Groop L, Ahlqvist E, Borén J, Orho-Melander M, Jansson PA. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia (2021). doi.org/10.1007/s00125-021-05594-1
  3. Sahlgrenska Academy. Galectin-1 linked to increased risk of type 2 diabetes November 8, 2021 www.gu.se/en/news/galectin-1-linked-to-increased-risk-of-type-2-diabetes

First Nations youth with T2D in the Hot North

    1. Titmuss A, Davis EA, O'Donnell V, Wenitong M, Maple-Brown LJ, Haynes A, Barr ELM, Boffa J, Brown ADH, Connors C, Corpus S, Dowler J, Graham S, Griffiths E, Kirkham R, Lee C, Moore E, Pearson G, Shaw JE, Singleton S, Sinha A, White G, Zimmet PYouth-onset type 2 diabetes among First Nations young people in northern Australia: a retrospective, cross-sectional study, The Lancet Diabetes & Endocrinology, 2021doi.org/10.1016/S2213-8587(21)00286-2.
    2. Central Australian Aboriginal Congress Discussion paper: Housing and Health, March 2018 www.caac.org.au/uploads/pdfs/Congress-Housing-and-Health-Discussion-Paper-Final-March-2018.pdf
    3. Diabetes Snapshot, 2020 Australian Institute of Health and Welfare www.aihw.gov.au/reports/australias-health/diabetes


p12-16 Continuous Glucose Monitoring – an update

  1. Garg S, Norman GJ. Impact of COVID-19 on Health Economics and Technology of Diabetes Care: Use Cases of Real-Time Continuous Glucose Monitoring to Transform Health Care During a Global Pandemic. Diabetes Technol Ther 2021;23;S15-S19.
  2. Bode B, King A, Russell-Jones D, Billings LK. Leveraging advances in diabetes technologies in primary care: a narrative review. Ann Med 2021; 53:805-816.
  3. The Naomi Berrie Diabetes Sensor. Transmitter on skin illustration [image on Internet]. 2021 [cited 2021 Nov 28]. Available from: https://www.nbdiabetes.org/file/1014
  4. Patton SR, Clements MA. Continuous glucose monitoring versus self-monitoring of blood glucose in children with type 1 diabetes—are there pros and cons for both? US Endocrinol 2012;8(1):27-29.
  5. Snaith JR, Holmes-Walker J. Technologies in the management of type 1 diabetes. Med J Aust 2021;214(5): 202-205.
  6. Schmelzeisen-Redeker G, Schoemaker M, Kirch-Steiger H, Freckmann G, Heinemann L, Del Re L. Time delay of CGM sensors: relevance, causes, and countermeasures. J Diabetes Sci Technol 2015;9:1006–1015.
  7. Sinha M, McKeon KM, Parker S, et al. A comparison of time delay in three continuous glucose monitors for adolescents and adults. J Diabetes Sci Technol 2017;11:1132–1137.
  8. Zimmerman C, Albanese-O’Neill A, Haller MJ. Advances in type 1 diabetes technology over the last decade. Eur Endocrinol 2019;15(2):70–76.
  9. Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019;42:1593-1603.
  10. American Diabetes Association. 5. Facilitating behavior change and wellbeing to improve health outcomes: Standards of Medical Care in Diabetes–2020. Diabetes Care 2020;43(Suppl. 1):S48–S65.
  11. Alcantara-Aragon V. Improving patient self-care using diabetes technologies. Ther Adv Endocrinol Metab 2019;10:1-11.
  12. Price DA, Deng Q, Kipnes M, Beck SE. Episodic Real-Time CGM Use in Adults with Type 2 Diabetes: Results of a Pilot Randomized Controlled Trial. Diabetes Ther 2021;12:2089-2099.
  13. Hirsch IB, Battelino T, Peters AL, Chamberlain JJ, Aleppo G, Bergenstal RM. Role of Continuous Glucose Monitoring in Diabetes Treatment. Arlington (VA): American Diabetes Association; 2018.
  14. Heinemann L, Freckmann G, Ehrmann D, Faber-Heinemann G, Guerra S, Waldenmaier D, et al. Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE): a multicentre, randomised controlled trial. Lancet 2018;391:1367–1377.
  15. Billings LK, Parkin CG, Price D. Baseline glycated hemoglobin values predict the magnitude of glycemic improvement in patients with type 1 and type 2 diabetes: subgroup analyses from the DIAMOND Study Program. Diabetes Technol Ther 2018;20(8):561–565.
  16. Charleer S, De Block C, Van Huffel L, Broos B, Fieuws S, Nobels F, et al. Quality of life and glucose control after 1 year of nationwide reimbursement of intermittently scanned continuous glucose monitoring in adults living with type 1 diabetes (FUTURE): a prospective observational real-world cohort study. Diabetes Care 2020;43:389–397.
  17. Fokkert M, van Dijk P, Edens M, Barents E, Mollema J, Slingerland R, et al. Improved wellbeing and decreased disease burden after 1-year use of flash glucose monitoring (FLARE-NL4). BMJ Open Diabetes Res Care 2019;7:e000809.
  18. Charleer S, Mathieu C, Nobels F, De Block C, Radermecker RP, Hermans MP, et al. Effect of continuous glucose monitoring on glycemic control, acute admissions, and quality of life: a real-world study. Clin Endocrinol Metab 2018;103:1224–1232.
  19. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries H, et al. International consensus on use of continuous glucose monitoring. Diabetes Care 2017;40:1631–1640.
  20. Krakauer M, Fernando Botero J, Lavalle-Gonzalez FJ, Proietti A, Barbieri DE. A review of flash glucose monitoring in type 2 diabetes. Diabetol Metab Syndr 2021;13(1):42
  21. Huang ES, O’Grady M, Basu A, Winn A, John P, Lee J, et al. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. The cost-effectiveness of continuous glucose monitoring in type 1 diabetes. Diabetes Care 2010;33:1269–1274.
  22. McQueen RB, Ellis SL, Campbell JD, Nair KV, Sullivan PW. Cost-effectiveness of continuous glucose monitoring and intensive insulin therapy for type 1 diabetes. Cost Eff Resour Alloc 2011;9:13
  23. Rose L, Klausmann G, Seibold A. Improving HbA1c Control in Type 1 or Type 2 Diabetes Using Flash Glucose Monitoring: A Retrospective Observational Analysis in Two German Centres. Diabetes Ther 2021;12:363-372.
  24. Martens T, Beck RW, Bailey R, Ruedy KJ, Calhoun P, Peters AL, et al. Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin: a randomized clinical trial. JAMA 2021;325(22):2262-2272.
  25. Ida S, Kaneko R, Murata K. Utility of Real-Time and Retrospective Continuous Glucose Monitoring in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. J Diabetes Res 2019;15: 4684815.
  26. Haak T, Hanaire H, Ajjan R, Hermanns N Riveline J-P, Rayman G. Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial. Diabetes Ther 2017;8(1):55-73.
  27. American Diabetes Association. Standards of medical care in diabetes—2018. Diabetes Care 2018;41(Suppl. 1):S1–153.
  28. Mattishent K, Loke YK. Bi-Directional interaction between hypoglycaemia and cognitive impairment in elderly patients treated with glucose-lowering agents: a systematic review and meta-analysis. Diabetes Obes Metab 2016;18:135-141.
  29. Lind M, Polonsky W, Hirsch IB. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA 2017;317:379–387.
  30. Barnard K, Thomas S, Royle P, Noyes K, Waugh N. Fear of hypoglycaemia in parents of young children with type 1 diabetes: a systematic review. BMC Pediatr 2010;10:50.
  31. Wright EE, Kerr MSD, Reyes IJ, Nabutovsky Y, Miller E. Use of Flash Continuous Glucose Monitoring Is Associated With A1C Reduction in People With Type 2 Diabetes Treated With Basal Insulin or Noninsulin Therapy. Diabetes Spectr 2021;34(2):184-189.
  32. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group, Beck RW, Hirsch IB, Laffel L, Tamborlane WV, Bode BW, et al. The effect of continuous glucose monitoring in well-controlled type 1 diabetes. Diabetes Care 2009;32:1378–1383.
  33. Ritholz MD, Atakov-Castillo A, Beste M, Beverley EA, Weinger K, Wolpert H. Psychosocial factors associated with use of continuous glucose monitoring. Diabet Med 2010;27(9):1060–1065.
  34. Continuous and flash glucose monitoring [Internet]. Australia: National Diabetes Services Scheme; 2019. Access to continuous and flash glucose monitoring through the NDSS; 19 Feb 2019. Available from: https://www.ndss.com.au/living-with-diabetes/managing-diabetes/continuous-glucose-monitoring/
  35. Bailey T, Bode BW, Christiansen MP, Klaff LJ, Alva S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol Ther 2015;17(11):787–94.
  36. Twigg S, Cohen N, Wischer W, Andrikopoulos S. Consensus Position Statement on: Utilising the Ambulatory Glucose Profile (AGP) combined with the Glucose Pattern Summary to Support Clinical Decision Making in Diabetes Care. Australia: Australian Diabetes Society; 2020. 8 p.
  37. Wysham CH, Kruger DF. Practical Considerations for Initiating and Utilizing Flash Continuous Glucose Monitoring in Clinical Practice. J Endocr Soc 2021;5(9):1-9.
  38. Beck RW, Bergenstal RM, Cheng P, Kollman C, Carlson AL, Johnson ML, et al. The relationships between time in range, hyperglycemia metrics, and HbA1c. J Diabetes Sci Technol 2019;13(4):614-626.
  39. Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes. Diabetes Technol Ther 2019;21: 81–85.
  40. Lu J, Ma X, Zhou J, Zhang L, Mo Y, Ying L, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 2018;41:2370–2376.
  41. Beck RW, Bergenstal RM, Riddlesworth TD, Kollman C, Li Z, Brown AS, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care 2019;42:400–405.
  42. Ajjan R, Slattery D, Wright E. Continuous Glucose Monitoring: A Brief Review for Primary Care Practitioners. Adv Ther 2019;36:579-596.
  43. DeWalt DA, Davis TC, Wallace AS, Seligman HK, Bryant-Shilliday B, Arnold CL, et al. Goal setting in diabetes self-management: taking the baby steps to success. Patient Educ Couns 2009;77(2):218–223.

p18 – 21  COVID-19 & diabetes

  1. Australian Government Department of Health. Coronavirus Case Numbers and Statistics. www.health.gov.au/health-alerts/covid-19/case-numbers-and-statistics Accessed Feb 7, 2022
  2. Ferré V, Peiffer-Smadja N, Visseaux B, Descamps D, Ghosn J, Charpentier C. Omicron SARS-CoV-2 variant: What we know and what we don’t. Anaesthesia Critical Care & Pain Medicine. 2022;41(1):100998.
  3. Kannan S, Spratt A, Sharma K, Chand H, Byrareddy S, Singh K. Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. Journal of Autoimmunity. 2022;126:102779.
  4. Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R, Klonoff DC. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. Journal of Diabetes Science and Technology. 2020;14(4):813-821.
  5. Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J, Lei F, Wang H, Xie J, Wang W, Li H, Zhang P, Song X, Chen X Xiang M, Zhang C, Bai L, Xiang D, Chen MM, Liu Y, Yan Y, Liu M, Mao W, Zou J, Liu L, Chen G, Luo P, Xiao B, Zhang C, Zhang Z, Lu Z, Wang J, Lu H, Xia X, Wang D, Liao X, Peng G, Ye P, Yang J, Yuan Y, Huang X, Guo J, Zhang BH, Li H. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism. 2020;31(6):1068-1077.
  6. Bornstein S, Rubino F, Khunti K, Mingrone G, Hopkins D, Birkenfeld AL, Boehm B, Amiel S, Holt RI, Skyler JS, DeVries JH, Renard E, Eckel RH, Zimmet P, Alberti KG, Vidal J, Geloneze B, Chen JC, Ji L, Ludwig B. Practical recommendations for the management of diabetes in patients with COVID-19. The Lancet Diabetes & Endocrinology. 2020;8(6):546-550.
  7. Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nature Reviews Endocrinology. 2021;17(1):11-30.
  8. Rubino F, Amiel SA, Zimmet P, Alberti G, Bornstein S, Eckel RH, Mingrone G, Boehm B, Cooper ME, Chai Z, Del Prato S, Jo L, Hopkins D, Herman WH, Khunti K, Mbanya J, Renard, E. New-Onset Diabetes in COVID-19. New England Journal of Medicine. 2020;383:789-790.
  9. The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. New England Journal of Medicine. 2021;384(8):693-704.
  10. Andrikopoulos S, Johnson G. The Australian response to the COVID-19 pandemic and diabetes – Lessons learned. Diabetes Research and Clinical Practice. 2020;165:108246.
  11. Scott E, Jenkins A, Fulcher G. Challenges of diabetes management during the COVID ‐19 pandemic. Medical Journal of Australia. 2020;213(2):56.
  12. https://www.health.gov.au/initiatives-and-programs/covid-19-vaccines/advice-for-providers/clinical-guidance/additional-considerations#vaccination-after-testing-positive-for-covid19

p22-24  Exercise is Medicine for People with T2D

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843.
  2. Weisman A, Fazli GS, Johns A, Booth GL. Evolving Trends in the Epidemiology, Risk Factors, and Prevention of Type 2 Diabetes: A Review. Canadian Journal of Cardiology. 2018;34(5):552-64.
  3. Magkos F, Hjorth MF, Astrup A. Diet and exercise in the prevention and treatment of type 2 diabetes mellitus. Nature Reviews Endocrinology. 2020;16(10):545-55.
  4. Shawahna R, Batta A, Asa’ad M, Jomaah M, Abdelhaq I. Exercise as a complementary medicine intervention in type 2 diabetes mellitus: A systematic review with narrative and qualitative synthesis of evidence. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2021;15(1):273-86.
  5. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton ES, Castorino K, Tate DF. Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065-79.
  6. Shah SZA, Karam JA, Zeb A, Ullah R, Shah A, Haq IU, Ali I, Darain H, Chen H. Movement is Improvement: The Therapeutic Effects of Exercise and General Physical Activity on Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Therapy. 2021;12(3):707-32.
  7. Sampath Kumar A, Maiya AG, Shastry BA, Vaishali K, Ravishankar N, Hazari A, Gundmi S, Jadhav R. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine. 2019;62(2):98-103.
  8. Alvarez C, Ramirez-Campillo R, Martinez-Salazar C, Mancilla R, Flores-Opazo M, Cano-Montoya J, Ciolac EG. Low-Volume High-Intensity Interval Training as a Therapy for Type 2 Diabetes. International Journal of Sports Medicine. 2016;37(9):723-9.
  9. Cai H, Li G, Zhang P, Xu D, Chen L. Effect of exercise on the quality of life in type 2 diabetes mellitus: a systematic review. Qual Life Res. 2017;26(3):515-30.
  10. Hawley JA, Lessard SJ. Exercise training-induced improvements in insulin action. Acta Physiol (Oxf). 2008;192(1):127-35.
  11. Nagi D, Hambling C, Taylor R. Remission of type 2 diabetes: a position statement from the Association of British Clinical Diabetologists (ABCD) and the Primary Care Diabetes Society (PCDS). British Journal of Diabetes. 2019;19(1):73-6.
  12. Hamman RF, Wing RR, Edelstein SL, Lachin JM, Bray GA, Delahanty L, Hoskin M, Kriska AM, Mayer-Davis EJ, Pi-Sunyer X, Regensteiner J, Venditti B, Wylie-Rosett J. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care. 2006;29(9):2102-7.
  13. Hordern MD, Dunstan DW, Prins JB, Baker MK, Singh MA, Coombes JS. Exercise prescription for patients with type 2 diabetes and pre-diabetes: a position statement from Exercise and Sport Science Australia. J Sci Med Sport. 2012;15(1):25-31.
  14. Stamatakis E, Johnson NA, Powell L, Hamer M, Rangul V, Holtermann A. Short and sporadic bouts in the 2018 US physical activity guidelines: is high-intensity incidental physical activity the new HIIT? British Journal of Sports Medicine. 2019;53(18):1137.
  15. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, George SM, Olson RD. The Physical Activity Guidelines for Americans. JAMA. 2018;320(19):2020-8.
  16. Buckley JP, Mellor DD, Morris M, Joseph F. Standing-based office work shows encouraging signs of attenuating post-prandial glycaemic excursion. Occup Environ Med. 2014;71(2):109-11.
  17. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, Shaw JE, Bertovic DA, Zimmet PZ, Salmon J, Owen N. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976-83.
  18. Kime N, Pringle A, Zwolinsky S, Vishnubala D. How prepared are healthcare professionals for delivering physical activity guidance to those with diabetes? A formative evaluation. BMC Health Services Research. 2020;20(1):8.
  19. Avery L, Flynn D, van Wersch A, Sniehotta FF, Trenell MI. Changing Physical Activity Behavior in Type 2 Diabetes. Diabetes Care. 2012;35(12):2681.
  20. Geerling R, Browne JL, Holmes-Truscott E, Furler J, Speight J, Mosely K. Positive reinforcement by general practitioners is associated with greater physical activity in adults with type 2 diabetes. BMJ Open Diabetes Research &amp;amp; Care. 2019;7(1):e000701.
  21. Spring B, Ockene JK, Gidding SS, Mozaffarian D, Moore S, Rosal MC, Brown MD, Vafiadis DK, Cohen DL, Burke LE, Lloyd-Jones D. Better population health through behavior change in adults: a call to action. Circulation. 2013;128(19):2169-76.
  22. http://exerciseismedicine.com.au/wp-content/uploads/2020/10/8-EIM_Healthcare-Provider-Action-Plan.pdf

p26-28  Faecal Microbiota Transplantation: Paradigm Shift or a Load of Crap?

  1. Snelson M, de Pasquale C, Ekinci EI, Coughlan MT. Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Practice & Research Clinical Endocrinology & Metabolism. 2021;35(3):101507.
  2. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913-6.e7.
  3. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLOS ONE. 2010;5(2):e9085.
  4. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-6.
  5. Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Scientific Reports. 2020;10(1):5450.
  6. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55.
  7. de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Faecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes. 2017;8(3):253-67.
  8. Bowden TA, Jr., Mansberger AR, Jr., Lykins LE. Pseudomembraneous enterocolitis: mechanism for restoring floral homeostasis. Am Surg. 1981;47(4):178-83.
  9. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal Infusion of Donor Feces for Recurrent Clostridium difficile. New England Journal of Medicine. 2013;368(5):407-15.
  10. Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M, Alani M, et al. Effect of Faecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. Annals of internal medicine. 2016;165(9):609-16.
  11. Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nature Reviews Gastroenterology & Hepatology. 2021;18(7):503-13.
  12. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, et al. Faecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015;149(1):102-9.e6.
  13. Costello SP, Hughes PA, Waters O, Bryant RV, Vincent AD, Blatchford P, et al. Effect of Faecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. Jama. 2019;321(2):156-64.
  14. Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet (London, England). 2017;389(10075):1218-28.
  15. Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A, et al. Findings From a Randomized Controlled Trial of Faecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology. 2015;149(1):110-8.e4.
  16. Sandborn WJ, Feagan BG, Marano C, Zhang H, Strauss R, Johanns J, et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology. 2014;146(1):85-95; quiz e14-5.
  17. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. The New England journal of medicine. 2013;369(8):699-710.
  18. Alang N, Kelly CR. Weight gain after faecal microbiota transplantation. Open Forum Infectious Diseases. 2015;2(1).
  19. Zhang PP, Li LL, Han X, Li QW, Zhang XH, Liu JJ, et al. Faecal microbiota transplantation improves metabolism and gut microbiome composition in db/db mice. Acta Pharmacol Sin. 2020;41(5):678-85.
  20. Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D, et al. Promising Treatment for Type 2 Diabetes: Faecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Front Cell Infect Microbiol. 2019;9:455.
  21. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027.
  22. Secombe KR, Al-Qadami GH, Subramaniam CB, Bowen JM, Scott J, Van Sebille YZA, et al. Guidelines for reporting on animal faecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols. Gut Microbes. 2021;13(1):1979878.
  23. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (New York, NY). 2013;341(6150):1241214-.
  24. Kootte RS, Levin E, Salojärvi J, Smits LP, Hartstra AV, Udayappan SD, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611-9.e6.
  25. Green J, Castle D, Berk M, Hair C, Loughman A, Cryan J, et al. Faecal microbiota transplants for depression – Who gives a crapsule? Australian and New Zealand Journal of Psychiatry. 2019;53(8):732-4.
  26. Yu EW, Gao L, Stastka P, Cheney MC, Mahabamunuge J, Torres Soto M, et al. Faecal microbiota transplantation for the improvement of metabolism in obesity: The FMT-TRIM double-blind placebo-controlled pilot trial. PLoS medicine. 2020;17(3):e1003051-e.
  27. Allegretti JR, Kassam Z, Hurtado J, Marchesi JR, Mullish BH, Chiang A, et al. Impact of faecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity. Hormones (Athens, Greece). 2021;20(1):209-11.
  28. Ng SC, Xu Z, Mak JWY, Yang K, Liu Q, Zuo T, et al. Microbiota engraftment after faecal microbiota transplantation in obese subjects with type 2 diabetes: a 24-week, double-blind, randomised controlled trial. Gut. 2021:gutjnl-2020-323617.
  29. Rinott E, Youngster I, Yaskolka Meir A, Tsaban G, Zelicha H, Kaplan A, et al. Effects of Diet-Modulated Autologous Faecal Microbiota Transplantation on Weight Regain. Gastroenterology. 2021;160(1):158-73.e10.
  30. de Groot P, Nikolic T, Pellegrini S, Sordi V, Imangaliyev S, Rampanelli E, et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut. 2021;70(1):92-105.
  31. Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, et al. Control of TH17 cells occurs in the small intestine. Nature. 2011;475(7357):514-8.
  32. Hanssen NMJ, de Vos WM, Nieuwdorp M. Faecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab. 2021;33(6):1098-110.
  33. Makkawi S, Camara-Lemarroy C, Metz L. Faecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurology - Neuroimmunology Neuroinflammation. 2018;5(4):e459.
  34. Borody T, Leis S, Campbell J, Torres M, Nowak A. Faecal Microbiota Transplantation (FMT) in Multiple Sclerosis (MS): 942. Official journal of the American College of Gastroenterology | ACG. 2011;106.
  35. Wilson BC, Vatanen T, Cutfield WS, O'Sullivan JM. The Super-Donor Phenomenon in Faecal Microbiota Transplantation. Frontiers in Cellular and Infection Microbiology. 2019;9(2).
  36. Kump P, Wurm P, Gröchenig HP, Wenzl H, Petritsch W, Halwachs B, et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Alimentary Pharmacology & Therapeutics. 2018;47(1):67-77.
  37. Vermeire S, Joossens M, Verbeke K, Wang J, Machiels K, Sabino J, et al. Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. Journal of Crohn's and Colitis. 2015;10(4):387-94.
  38. Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics. 2017;18(11):690-9.

p32-34 OzDAFNE – Dose adjustment education for people with T1D

  1. DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ. 2002;325(7367):746-746.
  2. McIntyre H, Knight B, Harvey D, Noud M, Hagger V, Gilshenan K. Dose adjustment for normal eating (DAFNE) — an audit of outcomes in Australia. Medical Journal of Australia. 2010;192(11):637-640.
  3. Craig ME, Twigg SM, Donaghue KC, Cheung NW, Cameron FJ, Conn J, Jenkins AJ, Silink M, for the Australian Type 1 Diabetes Guidelines Expert Advisory Group. National evidence‐based clinical care guidelines for type 1 diabetes in children, adolescents and adults. Australian Government Department of Health and Ageing. Canberra; 2011.
  4. Chatwin H, Broadley M, Speight J, Cantrell A, Sutton A, Heller S et al. The impact of hypoglycaemia on quality of life outcomes among adults with type 1 diabetes: A systematic review. Diabetes Research and Clinical Practice. 2021;174:108752.
  5. Ventura A, Holmes-Truscott E, Hendrieckx C, Pouwer F, Speight J. Diabetes MILES-2 2016 Survey Report. Melbourne: The Australian Centre for Behavioural Research in Diabetes; 2016. ISBN 978-0-9873835-7-0.
  6. Peyrot M, Rubin R, Lauritzen T, Snoek F, Matthews D, Skovlund S. Psychosocial problems and barriers to improved diabetes management: results of the Cross-National Diabetes Attitudes, Wishes and Needs (DAWN) Study. Diabetic Medicine. 2005;22(10):1379-1385.
  7. Skinner T, Joensen L, Parkin T. Twenty‐five years of diabetes distress research. Diabetic Medicine. 2020;37(3):393-400.
  8. Murphy K, Casey D, Dinneen S, Lawton J, Brown F. Participants’ perceptions of the factors that influence Diabetes Self-Management Following a Structured Education (DAFNE) programme. Journal of Clinical Nursing. 2011;20(9-10):1282-1292.
  9. Lawton J, Rankin D. How do structured education programmes work? An ethnographic investigation of the dose adjustment for normal eating (DAFNE) programme for type 1 diabetes patients in the UK. Social Science & Medicine. 2010;71(3):486-493.
  10. Rogers H, Turner E, Thompson G, Hopkins D, Amiel S. Hub-and-spoke model for a 5-day structured patient education programme for people with Type 1 diabetes. Diabetic Medicine. 2009;26(9):915-920.
  11. Gunn D, Mansell P. Glycaemic control and weight 7 years after Dose Adjustment For Normal Eating (DAFNE) structured education in Type 1 diabetes. Diabetic Medicine. 2012;29(6):807-812.
  12. Speight J, Amiel S, Bradley C, Heller S, Oliver L, Roberts S et al. Long-term biomedical and psychosocial outcomes following DAFNE (Dose Adjustment For Normal Eating) structured education to promote intensive insulin therapy in adults with sub-optimally controlled Type 1 diabetes. Diabetes Research and Clinical Practice. 2010;89(1):22-29.
  13. Hopkins D, Lawrence I, Mansell P, Thompson G, Amiel S, Campbell M et al. Improved Biomedical and Psychological Outcomes 1 Year After Structured Education in Flexible Insulin Therapy for People with Type 1 Diabetes: The U.K. DAFNE experience. Diabetes Care. 2012;35(8):1638-1642.
  14. Speight J, Holmes-Truscott E, Harvey D, Hendrieckx C, Hagger V, Harris S et al. Structured type 1 diabetes education delivered in routine care in Australia reduces diabetes-related emergencies and severe diabetes-related distress: The OzDAFNE program. Diabetes Research and Clinical Practice. 2016;112:65-72.
  15. Relative effectiveness of insulin pump treatment over multiple daily injections and structured education during flexible intensive insulin treatment for type 1 diabetes: cluster randomised trial (REPOSE). BMJ. 2017;356:j1285.
  16. National Diabetes Services Scheme (NDSS). Diabetes data snapshot – Type 1 diabetes. 2021 (September). https://www.ndss.com.au/wp-content/uploads/ndss-data-snapshot-202109-type1-diabetes.pdf
  17. Data obtained from OzDAFNE Database. Accessed: 4 November 2021.
  18. Horigan G, Davies M, Findlay-White F, Chaney D, Coates V. Reasons why patients referred to diabetes education programmes choose not to attend: a systematic review. Diabetic Medicine. 2016;34(1):14-26.
  19. Elliott J, Heller S, Hopkinson H, Mansell P. Does duration of Type 1 diabetes affect the outcomes of structured education? Diabetic Medicine. 2012;29:223.
  20. Whillier M, Musial J, MacLaughlin H. Evaluation of patient experience post structured education for diabetes self management (Dose Adjustment For Normal Eating-OzDAFNE). Diabetes Research and Clinical Practice. 2021;181:109065.
  21. Murphy K, Casey D, Dinneen S, Lawton J, Brown F. Participants’ perceptions of the factors that influence Diabetes Self-Management Following a Structured Education (DAFNE) programme. Journal of Clinical Nursing. 2011;20(9-10):1282-1292.
  22. Speight J, Skinner T, Dunning T, Black T, Kilov G, Lee C et al. Our language matters: Improving communication with and about people with diabetes. A position statement by Diabetes Australia. Diabetes Research and Clinical Practice. 2021;173:108655.
  23. Leelarathna L, Ward C, Davenport K, Donald S, Housden A, Finucane F et al. Reduced insulin requirements during participation in the DAFNE (dose adjustment for normal eating) structured education programme. Diabetes Research and Clinical Practice. 2011;92(2):e34-e36.
  24. Welch G, Jacobson A, Polonsky W. The Problem Areas in Diabetes Scale: An evaluation of its clinical utility. Diabetes Care. 1997;20(5):760-766.
  25. Hopkinson H, Jacques R, Gardner K, Amiel S, Mansell P. Twice‐ rather than once‐daily basal insulin is associated with better glycaemic control in Type 1 diabetes mellitus 12 months after skills‐based structured education in insulin self‐management. Diabetic Medicine. 2015;32(8):1071-1076. 

-- ENDS --